Mostrando postagens com marcador Instalacao Mecanica. Mostrar todas as postagens
Mostrando postagens com marcador Instalacao Mecanica. Mostrar todas as postagens

04 junho 2010

Radiador Remoto para Grupos Geradores

Sistemas com radiador remoto são geralmente utilizados em aplicações onde o ar é insuficiente para a ventilação do sistema de arrefecimento montado no chassi. Os radiadores remotos não eliminam a necessidade de ventilação para a sala do grupo gerador, mas podem reduzi-la. Se for exigido um sistema de arrefecimento com radiador remoto, o primeiro passo é determinar qual tipo de sistema remoto é necessário. Isto é determinado pelo cálculo da coluna de estática e de fricção que será aplicada no motor com base em sua localização física. Se os cálculos revelarem que o grupo gerador escolhido para a aplicação pode ser conectado a um radiador remoto sem exceder suas limitações de coluna de estática e de fricção, poderá ser utilizado um sistema simples de radiador remoto.
Se a coluna de fricção for excedida, porém não a de estática, poderá ser utilizado um sistema de radiador remoto com uma bomba auxiliar do líquido de arrefecimento.
Se as limitações de coluna de estática e de fricção do motor forem excedidas, será necessário um sistema isolado de arrefecimento para o grupo gerador. Isto pode incluir um radiador remoto com tanque tipo "hot well", ou um sistema baseado em um trocador de calor líquido-a-líquido.
Qualquer que seja o sistema utilizado, a aplicação de um radiador remoto para arrefecer o motor irá requerer um projeto cuidadoso. Em geral, todas as recomendações para radiadores montados no chassi também aplicam-se a radiadores remotos. Para qualquer tipo de sistema de radiador remoto, considere o seguinte:

• Recomenda-se que o radiador e o ventilador sejam dimensionados com base na temperatura máxima de 93ºC do tanque superior do radiador e a 115% da capacidade de arrefecimento para permitir a formação de incrustações. A menor temperatura do tanque superior (menor que a descrita em Arrefecimento do Motor) compensa a perda de calor da saída do motor ao tanque superior do radiador remoto. Consulte o fabricante do motor para informações sobre o calor dissipado do motor para o líquido de arrefecimento e as taxas de fluxo de arrefecimento.
• O tanque superior do radiador (ou um tanque auxiliar) deve ser instalado no ponto mais alto do sistema de arrefecimento. Ele deve ser equipado com: uma tampa apropriada de abastecimento/pressão, uma linha de abastecimento no ponto mais baixo do sistema (para que o sistema possa ser abastecido da base para o topo) e uma linha de ventilação saindo do motor e que não tenha qualquer depressão ou obstrução. (Depressões e voltas sobre o cabeçote podem acumular líquido de arrefecimento e evitar a ventilação do ar quando o sistema é abastecido.) No ponto mais alto do sistema devem ser instalados também os meios para abastecer o sistema e um interruptor de alarme de nível baixo do líquido de arrefecimento.
• A capacidade do tanque superior do radiador (ou do tanque auxiliar) deve ser equivalente a pelo menos 17% do volume total do líquido de arrefecimento do sistema para fornecer uma “capacidade de perda” (11%) ao líquido de arrefecimento e espaço para a expansão térmica (6%). A capacidade de perda é o volume de líquido de arrefecimento que pode ser perdido por vazamentos não detectados e pelo alívio normal da tampa de pressão antes de o ar ser sugado para a bomba do líquido de arrefecimento. O espaço para expansão térmica é criado pelo bocal de abastecimento quando um sistema frio é abastecido.
• Em ambientes com alto grau de contaminantes e para reduzir a formação de incrustações nas aletas do radiador, devem ser utilizados radiadores com um espaçamento maior entre as aletas (nove aletas ou menos por polegada).
• A coluna de fricção do líquido de arrefecimento externa ao motor (perda de pressão devido à fricção nos tubos, nas conexões e no radiador) e a coluna de estática do líquido de arrefecimento (altura da coluna do líquido, medida a partir da linha de centro da árvore de manivelas) não deve exceder os valores máximos recomendados pelo fabricante do motor. Se não puder ser encontrada uma configuração de sistema que permita ao motor operar dentro das limitações da coluna de estática e de fricção, outro tipo de sistema de arrefecimento deverá ser usado.
NOTA: Uma coluna de estática excessiva do líquido de arrefecimento (pressão) pode causar vazamentos no retentor do eixo da bomba do líquido de arrefecimento. A fricção excessiva da coluna do líquido de arrefecimento (perda de pressão) resultará em arrefecimento insuficiente do motor.
• Para o radiador, deve ser utilizada uma mangueira com comprimento de 152 a 457 mm, de acordo com a norma SAE 20R1, ou equivalente, para conectar a tubulação do líquido de arrefecimento com o motor a fim de absorver o movimento e a vibração do grupo gerador.
• É altamente recomendado que as mangueiras do radiador sejam fixadas com 2 abraçadeiras de grau ideal de “torque constante” em cada extremidade para reduzir o risco de perdas súbitas do líquido de arrefecimento do motor em caso de uma mangueira sob pressão soltar-se. Podem ocorrer danos graves a um motor se for operado sem líquido de arrefecimento no bloco, mesmo por alguns segundos.
• Deve ser instalada uma válvula de dreno na parte mais baixa do sistema.
• As válvulas de esferas ou de comportas (as válvulas globo são muito restritivas) são recomendadas para isolar o motor para que todo o sistema não precise ser drenado para algum serviço no motor.
• Lembre-se que o grupo gerador deverá acionar eletricamente o ventilador do radiador remoto, os ventiladores de ventilação, as bombas do líquido de arrefecimento e outros acessórios necessários para a operação em aplicações com arrefecimento remoto. Dessa forma, a capacidade em kW ganha pelo não acionamento mecânico de um ventilador é consumida geralmente pela adição de dispositivos elétricos necessários ao sistema de arrefecimento remoto. Lembre-se de adicionar essas cargas elétricas à carga total do grupo gerador.

Bookmark and Share

06 maio 2010

Proteção Contra Incêndio - Grupos Geradores

O projeto, a escolha e a instalação de sistemas de proteção contra incêndio estão além do escopo deste blog devido à ampla gama de fatores a serem considerados, como ocupação do edifício, normas e a eficiência dos vários sistemas de proteção contra incêndio. Entretanto, aí vão algumas dicas gerais:
• O sistema de proteção contra incêndio deve atender as exigências das autoridades locais, como o fiscal de obras, o comandante do corpo de bombeiros ou o agente de seguros.
• Grupos geradores usados para energia de emergência e standby devem ser protegidos contra incêndio pela localização ou pelo uso de uma construção resistente a incêndios na sala do grupo gerador. Em alguns locais, a construção da sala do gerador em instalações consideradas necessárias para a segurança da vida, deve prever uma capacidade de resistência de duas horas a incendios. Alguns locais também exigem um hidrante de proteção contra incêndio. Considere o uso de portas corta-fogo ou anteparos na sala do grupo gerador.
•A sala do grupo gerador deve ser ventilada adequadamente para evitar a concentração de gases do escape ou de gás combustível inflamável.
• A sala do gerador não deve ser usada para fins de armazenamento.
• A sala do gerador não deve ser classificada como local perigoso (conforme definido pela NEC) somente por causa do combustível do motor.
• As autoridades locais geralmente classificam o grupo gerador como uma aplicação de baixo calor quando usado por breves períodos, mesmo que a temperatura dos gases de escape exceda 538ºC. Em locais onde a temperatura dos gases de escape exceda 538ºC, alguns motores diesel e a maioria dos motores a gás podem ser classificados como aplicações de alto calor e podem requerer sistemas de escape classificados para operação a 760ºC. Consulte o fabricante do motor para informações sobre as temperaturas de escape.
• As autoridades locais podem especificar a quantidade, o tipo e os tamanhos de extintores de incêndio portáteis aprovados e exigidos para a sala do gerador.
• Uma estação de parada manual de emergência fora da sala do gerador, ou remota em relação a um grupo gerador num gabinete externo, deverá facilitar o corte do grupo gerador na eventualidade de um incêndio ou de outro tipo de emergência.
• Geralmente, os sistemas de combustível líquido são limitados um edifícios. Entretanto, as autoridades locais podem impor restrições muito mais rigorosas quanto à quantidade de combustível que poderá ser armazenada dentro de um edifício. Além disso, podem ser feitas exceções para permitir o uso de quantidades maiores de combustível na sala do grupo gerador, especialmente se a sala foi projetada adequadamente com sistemas de proteção contra incêndio.
• Os tanques de combustível localizados no interior de edifícios e acima do andar mais baixo ou do porão devem ser protegidos por um dique de acordo com as normas e regulamentações NFPA do meio ambiente.
• O grupo gerador deve ser testado periodicamente conforme recomendado com pelo menos 30% de carga até atingir temperaturas estáveis de operação. Ele também deve ser operado próximo da carga plena pelo menos uma vez por ano para evitar acúmulo de combustível no sistema de escape.

Bookmark and Share

30 abril 2010

Ruídos do Grupo Gerador

As aplicações de grupo gerador estão sujeitas a problemas relacionados com ruídos, devido aos altos níveis de ruído produzidos por grupos geradores em funcionamento. Por isso, foram criadas normas e padrões para proteger pessoas e usuários contra esses níveis indesejáveis de ruídos.
Em geral, os níveis de ruído exigidos no perímetro de uma propriedade devem estar entre pouco mais de 50 dB(A) e pouco menos de 60 dB(A) (dependendo da hora do dia), enquanto os níveis de som de um grupo gerador "não tratado" podem chegar a 100 dB(A). O ruído do grupo gerador pode ser amplificado pelas condições do local, ou o nível de ruído existente no local pode impedir que o grupo gerador atinja os níveis requeridos de desempenho de ruído. (Para medir com precisão o nível de ruído de qualquer fonte, esta deverá ser 10 dB(A) maior que o ambiente ao seu redor).
O nível de ruído produzido por um grupo gerador no perímetro de uma propriedade será previsível se o grupo gerador for instalado num ambiente de campo aberto. Em um ambiente de campo aberto, não existem paredes refletoras para amplificar o ruído produzido pelo grupo gerador e o nível de ruído segue a regra de “redução de 6 dB(A) para o dobro da distância”. Se a linha da propriedade estiver dentro do campo vizinho de um grupo gerador, o nível do ruído poderá não ser previsível. Um ambiente de campo vizinho é qualquer medição feita dentro duas vezes a maior dimensão da fonte do ruído.
As paredes refletoras e outras superfícies amplificam o nível do ruído que pode ser percebido por uma pessoa. Por exemplo, se um grupo gerador estiver instalado junto a uma parede com superfície sólida, o nível do ruído perpendicular à parede será aproximadamente duas vezes a intensidade esperada do som do grupo gerador num ambiente de campo aberto (p.ex., um grupo gerador funcionando com nível de ruído de 68 dB(A) deverá indicar 71 dB(A) próximo de uma parede refletora). A instalação do grupo gerador num canto amplifica ainda mais o nível do ruído percebido.
As regulamentações de ruídos geralmente são criadas em função de reclamações, e o alto custo de reforma de um local para reduzir os níveis de ruído incentiva a preocupação com os requisitos de desempenho sonoro no início do ciclo do projeto e a instalação de recursos para atenuação dos níveis de ruídos em termos de custo/benefício.


Redução de Ruídos Transmitidos por Estruturas

Estruturas vibratórias criam ondas de pressão sonora (ruído) no ar ao seu redor. As conexões com um grupo gerador podem causar vibrações na estrutura do edifício, criando ruído. Geralmente, estas incluem as fixações do chassi, o duto de descarga de ar do radiador, a tubulação de escape, a tubulação do líquido de arrefecimento, as linhas de combustível e os conduítes da fiação. Além disso, as paredes do gabinete de um grupo gerador podem vibrar e provocar ruído. A montagem de um grupo gerador sobre isoladores de vibração do tipo mola reduz eficientemente a transmissão de vibrações. A prática de isolamento de vibrações é descrita em Isoladores de Vibração no início deste capítulo. As conexões flexíveis com o tubo de escape, duto de ar, linhas de combustível, tubo do líquido de arrefecimento (sistemas com radiador ou trocador de calor remoto) e conduítes da fiação reduzem eficientemente a transmissão de vibrações. Todas as aplicações de grupo gerador requerem o uso de conexões flexíveis com o grupo gerador.

Redução de Ruídos Produzidos pelo Ar

Os ruídos produzidos pelo ar possuem uma característica direcional e geralmente é mais aparente na extremidade alta da faixa de freqüências.
• O tratamento mais simples é direcionar o ruído, como a saída do radiador ou do escape para longe dos receptores. Por exemplo, dirija o ruído verticalmente de modo que as pessoas no nível do solo não fiquem no caminho do som.
• As barreiras na linha de visão são eficazes no bloqueio de ruídos. As barreiras feitas com materiais de alto teor de massa como concreto, blocos preenchidos com cimento ou tijolos são mais indicadas. Elimine caminhos de som através de rachaduras nos pontos de acesso de portas ou da sala (ou gabinete) do escape, combustível ou fiação elétrica.
• Existem materiais acústicos (que absorvem som) para revestimento de dutos de ar e para cobrir paredes e telhados. Além disso, forçar o ruído a circular em curva de 90 graus num duto reduz os ruídos de alta freqüência. Dirigir o ruído para uma parede revestida com material acústico pode ser muito eficaz. Fibra de vidro ou espuma podem ser adequados em termos de custo, disponibilidade, densidade, retardo de chama, resistência à abrasão, estética e facilidade de limpeza. Deve-se selecionar materiais que resistam
à ação do óleo e outros contaminantes do motor.
• Um compartimento de blocos de concreto é uma barreira excelente para todos os ruídos. Os blocos podem ser preenchidos com areia para aumentar a massa da parede e aumentar a atenuação dos ruídos.
• As disposições de radiadores remotos podem ser usadas para limitar o fluxo de ar e para dirigir a fonte de ruído do ventilador do radiador para um local menos incômodo para as pessoas. As instalações com radiador remoto podem ser equipadas com ventiladores de baixa rotação para minimizar o ruído do conjunto.

Bookmark and Share

07 março 2010

Tanques de Combustível para Grupos Geradores

Tanques de Combustível Sob a Base
Quando um grupo gerador é montado sobre um tanque de combustível sob a base, os isoladores de vibração devem ser instalados entre o grupo gerador e o tanque de combustível. O tanque de combustível deve ser capaz de suportar o peso do grupo e resistir às cargas dinâmicas. O tanque deve ser montado de modo que haja um espaço de ar entre a base do tanque e o piso para reduzir a corrosão e permitir inspeções visuais quanto a vazamentos.

Tanques Diários
Quando uma aplicação de Grupos Geradores requer um tanque de combustível diário intermediário, este geralmente é dimensionado para um período de funcionamento de aproximadamente 2 horas com o grupo gerador sob carga plena. (Sujeito às limitações das normas para o combustível na sala do grupo gerador.)
Um único tanque diário pode alimentar vários grupos geradores, porém é preferível que haja um tanque diário para cada grupo gerador, localizado tão perto quanto possível do mesmo. Posicione o tanque para permitir seu abastecimento manual, se necessário.
A altura do tanque diário deve ser suficiente para estabelecer uma coluna positiva com a bomba de combustível do motor. (Nível mínimo no tanque não inferior a 150 mm acima da entrada de combustível do motor.) A altura máxima do combustível no tanque diário não deve ser suficiente para estabelecer uma coluna positiva com as linhas de retorno do combustível no motor.
A localização da linha de retorno do combustível no tanque diário é diferente dependendo do tipo de motor utilizado.
Alguns motores requerem que o combustível seja retornado acima do nível máximo do tanque; outros requerem que o combustível seja retornado para o tanque na base (ou abaixo do nível mínimo do tanque). O fabricante do motor fornece estas especificações.
Os recursos importantes, requeridos ou desejados, dos tanques diários incluem:
• Tanque de ruptura ou lago. (Opcional, porém exigido por lei em muitas regiões.)
• Bóia utilizada no abastecimento do tanque para controlar: uma válvula solenóide, se o tambor de abastecimento estiver acima do tanque diário, ou uma bomba, se o tambor de abastecimento estiver abaixo do tanque diário.
• Tubo de ventilação, de mesmo diâmetro que o de abastecimento, roteado para o ponto mais alto do sistema.
• Válvula de dreno. 
• Medidor do nível ou visor de vidro.
• Alarme de nível baixo (opcional).
• Bóia de nível alto para controlar: o solenóide, se o tambor de abastecimento estiver acima do tanque diário, ou o controle da bomba, se o tambor de abastecimento estiver abaixo do tanque diário.
• Refluxo para o tambor de abastecimento caso este esteja abaixo do tanque diário.
Leis e padrões locais, bem como normas federais, freqüentemente controlam a construção de tanques diários, sendo, portanto, essencial consultar as autoridades locais. 


Consulte tambem "Considereções na instalação de tubulação do Combustível Diesel".


Bookmark and Share

07 janeiro 2010

Pré-Aquecimento para Grupos Geradores


Partida a Frio e Aceitação de Carga: Uma consideração crítica do projetista do sistema de geração de energia é o tempo que o sistema de emergência ou standby leva para detectar uma falha de energia, dar a partida no grupo gerador e transferir a carga. Algumas normas e padrões para sistemas de energia de emergência estabelecem que o grupo gerador deve ser capaz de alimentar todas as cargas de emergência em até 10 segundos após a falta de energia. Alguns fabricantes de grupos geradores limitam a classificação do desempenho de partida a frio a uma porcentagem da classificação standby do grupo gerador. Esta prática reconhece que em muitas aplicações, apenas uma parte da carga total conectável é a carga de emergência (as cargas não críticas podem ser conectadas posteriormente), e que é difícil dar a partida e atingir a aceitação de carga total com grupos geradores a diesel.
Os critérios de projeto para partida a frio e aceitação de carga da Cummins Power Generation são que o grupo gerador seja capaz de dar partida e alimentar todas as cargas de emergência em até 10 segundos após a falha de energia. Este nível de desempenho presume que o grupo gerador esteja em um local com temperatura ambiente mínima de 4ºC e que esteja equipado com aquecedores do líquido de arrefecimento. Isto deve ser conseguido instalando-se o grupo gerador em uma sala ou carenagem aquecida.
Carenagens externas, protegidas contra intempéries geralmente não são isoladas, dificultando a manutenção de um grupo gerador aquecido em temperaturas ambiente mais frias.
Se um grupo gerador precisar ser instalado em um gabinete não aquecido num local com baixas temperaturas, o projetista deverá consultar o fabricante. O operador é responsável pela monitoração do funcionamento dos aquecedores do líquido de arrefecimento do grupo gerador (a norma NFPA 110 exige um alarme de baixa temperatura do líquido de arrefecimento para esta finalidade) e pela obtenção de um grau ideal do combustível para as condições ambiente.
Os grupos geradores em aplicações de energia de emergência devem partir e alimentar todas as cargas de emergência em até 10 segundos após a falha de energia. Para atender tais normas, geralmente são necessários aquecedores do líquido de arrefecimento do motor mesmo em ambientes aquecidos, especialmente para grupos geradores a diesel.
A NFPA 110 tem requisitos específicos para os sistemas de Nível 1 (onde uma falha do sistema pode resultar em sérios acidentes ou perdas de vidas):
• Aquecedores do líquido de arrefecimento são necessários a menos que a temperatura ambiente da sala do gerador não seja menor que 21º C.
• Aquecedores do líquido de arrefecimento são necessários para manter a temperatura do bloco do motor acima de 32º C se houver a possibilidade de que a temperatura ambiente da sala do gerador caia até 4º C, porém nunca abaixo deste valor.
O desempenho em temperaturas mais baixa não é definido. (Em temperaturas ambientes mais baixas, o grupo gerador pode não dar a partida, ou pode não alimentar as cargas tão rapidamente. Além disso, os alarmes de baixa temperatura podem indicar problemas se o aquecedor do líquido de arrefecimento não mantiver a temperatura do bloco num nível alto o suficiente para a partida em 10 segundos.)
• Aquecedores de bateria são necessários se houver a possibilidade de que a temperatura ambiente da sala do gerador caia abaixo de 0ºC.
• É necessário um alarme de baixa temperatura do motor.
• Os aquecedores de líquido de arrefecimento e da bateria devem ser alimentados pela fonte normal de energia.

Aquecedores do Líquido de Arrefecimento: Dispositivos de Pré-Aquecimento de Grupos Geradores controlados termostaticamente são necessários para partidas rápidas e boa aceitação de carga em equipamentos utilizados em aplicações de emergência ou standby. É importante entender que os aquecedores de líquido de arrefecimento normalmente são projetados para manter o motor aquecido o suficiente para uma partida rápida e confiável e alimentação da carga, e não para aquecer o ambiente onde se encontra o grupo gerador. Assim, além da operação do aquecedor do líquido de arrefecimento sobre o motor, a temperatura do ar ambiente ao redor do grupo gerador deverá ser mantida a um mínimo de 10º C. Se a área em torno do grupo gerador não for mantido nesta temperatura, deverão ser considerados: o uso de combustível de tipo especial ou aquecimento do combustível (para grupos geradores a diesel), aquecedores de alternador, aquecedores de controle e aquecedores de bateria.
Uma falha no Pré-Aqueciment ou uma redução da temperatura ambiente ao redor do motor não evitará necessariamente a partida do motor, mas afetará o tempo para que o motor parta e quão rapidamente a carga poderá ser conectada ao sistema de geração de energia local.
Funções de alarme de baixa temperatura do motor são geralmente adicionadas aos grupos geradores para alertar os operadores sobre a possibilidade de ocorrência deste problema nos sistemas em funcionamento.
Os disposivos de Pré-Aquecimento são um item de manutenção e, portanto, é de se esperar que o elemento de aquecimento (normalmente uma resistencia) deva ser substituído algumas vezes durante a vida da instalação. Para substituir o elemento do aquecedor sem a drenagem completa do sistema de arrefecimento do motor, devem ser fornecidas válvulas de isolamento (ou outros meios) do Pré-Aquecimento.
Os dispositivos de Pré-Aquecimento podem funcionar em temperaturas consideravelmente mais altas do que a temperatura das linhas do líquido de arrefecimento do motor, razão pela qual devem ser usadas mangueiras de silicone de alta qualidade, ou mangueiras trançadas para evitar falha prematura das mangueiras do líquido de arrefecimento associadas com o Pré-Aquecimento. Deve-se tomar cuidado no projeto de instalação do aquecedor do líquido de arrefecimento para se evitar voltas sobre o cabeçote no roteamento da mangueira que possam resultar em bolsões de ar, causando falha de superaquecimento do sistema.
Os aquecedores do líquido de arrefecimento do motor funcionam normalmente quando o grupo gerador não está em operação, razão pela qual os mesmos são conectados à fonte normal de energia. O aquecedor deverá ser desativado sempre que o grupo gerador estiver funcionando.
Isto pode ser feito de várias maneiras, como um interruptor de pressão de óleo, ou pela lógica de controle do grupo gerador.


Aquecedores de Óleo e de Combustível: Para as aplicações onde o grupo gerador será exposto a baixas temperaturas ambientes (menos de –18ºC), também podem ser necessários aquecedores do óleo lubrificante e das linhas e filtro de combustível para evitar que o combustível se torne pastoso.


Aquecedores Anti-condensação: Para aplicações onde o grupo gerador será exposto a alta umidade ou temperaturas que oscilam em torno do ponto de orvalho, devem ser usados aquecedores para o gerador e uma caixa de controle para evitar a condensação. A condensação na caixa de controle, nos circuitos de controle ou no isolamento dos enrolamentos do gerador pode causar corrosão, deterioração dos circuitos e até mesmo curtos-circuitos e falhas prematuras de isolamento.

Bookmark and Share

09 dezembro 2009

Sistemas de Partidas de Motores para Grupos Geradores

Basicamente voce poderá encontrar dois tipos de partida para motores de Grupos Geradores. Partida com Baterias ou Partida a ar. Veja abaixo detalhes de ambos.


Partida com Bateria
Os sistemas de partida com bateria de grupos geradores geralmente usam 12 ou 24 volts. Em geral, os grupos geradores menores utilizam sistemas de 12 volts e as máquinas maiores usam sistemas de 24 volts. A imagem ao lado ilustra as conexões típicas da bateria com o motor de partida. Considere o seguinte ao escolher ou dimensionar as baterias e os equipamentos relacionados:
• As baterias devem ter capacidade suficiente (APF, Ampères de Partida a Frio) para fornecer a corrente para o giro do motor, indicada nas especificações do grupo gerador recomendado. As baterias podem ser tanto de chumbo-ácido quanto de níquel-cádmio. As mesmas devem ter sido projetadas para este uso e ter sido aprovadas pelas autoridades locais.
• Um alternador acionado por motor com regulador de voltagem automático integrado é fornecido normalmente para recarregar as baterias durante o funcionamento. Para a maioria dos sistemas de energia através de grupos geradores, um carregador de bateria, tipo líquida, alimentado pela fonte normal de energia, é desejável ou exigido para manter as baterias plenamente carregadas quando o grupo gerador não estiver funcionando. Os carregadores de bateria líquida são exigidos para sistemas standby de emergência.
• As normas geralmente especificam um tempo máximo de carga da bateria. A seguinte regra prática pode ser utilizada para dimensionar os carregadores de baterias auxiliares:

• As normas locais podem exigir aquecedores para manter uma temperatura mínima da bateria de 10ºC se o grupo gerador estiver sujeito a temperaturas muito baixas.
• Os grupos geradores normalmente incluem cabos de bateria e fornecedores podem também oferecer bandejas apropriadas para instalação das baterias.




Distribuição das Baterias de Partida: Se as baterias forem montadas a uma distância do motor de partida maior que o comprimento normal dos cabos, estes deverão ser projetados de acordo com essa distância. A resistência total dos cabos mais as conexões não deverá resultar em uma queda excessiva de voltagem entre a bateria e o motor de partida. As recomendações para o motor são que a resistência total do circuito de partida mais a dos cabos e conexões não exceda 0,00075 ohms para sistemas de 12 volts e 0,002 ohms para sistemas de 24 volts. Veja o seguinte exemplo de cálculo.



Um grupo gerador possui um sistema de partida de 24 VCC, alimentado por duas baterias de 12 volts em série. O comprimento total dos cabos é de 9,52 m, incluindo o cabo entre as baterias. Existem seis conexões de cabos. Calcule a bitola dos cabos necessários como segue:
1. Assuma uma resistência de 0,0002 ohms para o contato do solenóide do motor de partida (RCONTATO).
2. Assuma uma resistência de 0,00001 ohms para cada conexão de cabo (RCONEXÃO), num total de seis.
3. Com base na fórmula que:
• Resistência Máxima Permitida do Cabo
= 0,002 - RCONEXÃO - RCONTATO
= 0,002 – 0,0002 - (6 x 0,00001)
= 0,00174 ohms
4. Confira na figura abaixo as resistências dos cabos AWG (Bitola Americana de Cabos). Neste exemplo, como mostram as linhas pontilhadas, a menor bitola de cabo que pode ser utilizada é 2 cabos No. 1/0 AWG em paralelo.



Partida com Ar Comprimido
Os sistemas de partida do motor com ar comprimido estão disponíveis para alguns grupos geradores maiores. A partida a ar pode ser indicada para algumas aplicações de energia Prime desde que o ar comprimido esteja prontamente disponível. A Figura abaixo mostra um arranjo típico de tubulação para um sistema de motor de partida a ar. 



Considere os itens abaixo para determinar os equipamentos necessários para a instalação de um sistema de partida a ar:
• O fabricante do motor deverá ser consultado quanto à recomendações relativas à bitola da mangueira de ar e o volume mínimo exigido do tanque para cada segundo de partida. O tamanho do tanque dependerá do tempo mínimo de partida necessário. 
• Os tanques de ar (receptores) devem ser equipados com uma válvula de dreno do tipo roscada (outros tipos não são recomendados por serem uma fonte comum de vazamentos de ar). A umidade pode danificar os componentes do motor de partida.
• Todas as válvulas e acessórios do sistema devem ser projetados para a partida a ar de motores diesel.
• As conexões de tubos devem ser do tipo de vedação seca e devem ser feitas com selador de rosca. Não é recomendado uso de fita Teflon pois ela não fixa as roscas adequadamente e é uma fonte de resíduos que podem
obstruir as válvulas.



Nota: As baterias, embora de capacidade muito menor, ainda serão necessárias para o controle do motor e para a monitoração dos sistemas quando for utilizada a partida a ar.

Bookmark and Share

25 novembro 2009

Considereções na instalação de tubulação do Combustível Diesel

Para a correta instalação de um Grupo Gerador de Energia, a tubulação do combustível diesel devem ser construídas em tubo de ferro preto. Os tubos e conexões de ferro fundido ou de alumínio não devem ser utilizados por serem porosos e podem permitir o vazamento do combustível. As tubulações, conexões e tanques de combustível galvanizados não devem ser utilizados porque a camada de galvanização é atacada pelo ácido sulfúrico que se forma quando o enxofre no combustível reage com a condensação no tanque, resultando em detritos que podem obstruir bombas e filtros de combustível. As tubulações de cobre não devem ser utilizadas porque o combustível polimeriza (torna-se espesso) no tubo de cobre durante longos períodos de inatividade e pode obstruir os injetores de combustível. Além disso, as tubulações de cobre são menos resistentes que o ferro preto e, portanto, mais propensas a danos.


Nota: Nunca use tubulações, conexões ou tanques de combustível galvanizados ou de cobre. A condensação no tanque e nas tubulações reage com o enxofre no combustível diesel e produz ácido sulfúrico. A estrutura molecular das tubulações ou tanques de cobre ou galvanizados reage com o ácido e contamina o combustível.


Para as conexões do motor devem ser utilizadas mangueiras flexíveis certificadas para absorver o movimento e a vibração do grupo gerador. A tubulação do tanque diário para o motor deve estar sempre inclinada para baixo desde o tanque até o motor, sem voltas para cima que possam permitir a entrada de ar no sistema.
A tubulação do sistema de combustível deve ser apoiada corretamente para evitar quebras por vibração. Ela não deve ficar próxima a tubos de aquecimento, fiação elétrica ou componentes do sistema de escape do motor. O projeto do sistema da tubulação deve incluir válvulas em locais apropriados para permitir o isolamento dos componentes do sistema para reparos sem a necessidade de se drenar todo o sistema.

Os sistemas de tubulações devem ser inspecionados regularmente quanto a vazamentos e condições gerais. O sistema da tubulação deve ser escorvado antes do funcionamento do motor para remover a sujeira e outras impurezas que possam danificá-lo. O uso de conexões em “T” em vez de cotovelos permite uma limpeza mais fácil do sistema da tubulação.
Os dados do fabricante do motor indicam as restrições máximas de entrada e de retorno do combustível, o fluxo máximo, a alimentação e o retorno, e o consumo de combustível. A figura acima mostra os tamanhos mínimos de mangueiras e tubos para as conexões com o tanque de suprimento ou com o tanque diário quando se encontram a uma distância de 15 metros do grupo e aproximadamente na mesma altura.
O tamanho das mangueiras e tubos deve basear-se no fluxo máximo de combustível e não no consumo. É altamente recomendado que as restrições à entrada e ao retorno sejam verificadas antes que o grupo gerador seja colocado em serviço.

Bookmark and Share

15 novembro 2009

Considerações sobre a Escolha do Combustível de um Grupo Gerador


A escolha do combustível, seja gás natural, diesel ou GLP, afetará a disponibilidade e o dimensionamento do grupo gerador. Considere o seguinte:


Combustível Diesel

• O combustível diesel é recomendado para aplicações de emergência e standby. Para um bom desempenho de partida e máxima vida útil do motor, recomenda-se o combustível diesel ASTM D975 Grau No. 2. Consulte o distribuidor do fabricante do motor sobre o uso de outros graus de combustível diesel para diversos motores.
• Deve-se projetar o armazenamento do combustível no local, mas o tanque não deve ser muito grande. O combustível diesel pode ser armazenado por um período de até dois anos, assim o tanque de suprimento deve ser dimensionado para permitir o reabastecimento de combustível com base na programação de exercícios e testes nesse período.
Pode ser necessário aplicar um micro-bioinseticidase a freqüência de reabastecimento for baixa, ou se condições de umidade elevada favorecerem o crescimento de micróbios no combustível. Os micróbios podem obstruir os filtros de combustível e afetar o funcionamento do motor ou até mesmo danificá-lo.
• Climas frios – Deve ser usado o combustível Premium de Grau 1-D quando a temperatura ambiente estiver abaixo do ponto de congelamento. Pode ser necessário o aquecimento do combustível para evitar a obstrução dos filtros de combustível quando a temperatura cair abaixo do ponto de névoa do combustível – cerca de –6ºC para combustível de Grau 2-D e –26ºC para Grau 1-D.

Combustível Biodiesel
Combustíveis biodiesel derivam de uma ampla variedade de fontes renováveis como óleos vegetais, gorduras animais e óleos de cozinha. Genericamente, estes combustíveis são chamados Ésteres Metil-Ácido-Graxos (FAME).
Quando usados em motores diesel, normalmente a emissão de fumaça, a potência e a economia de combustível são reduzidas. Embora a fumaça seja reduzida, o efeito em outras emissões varia, com redução de alguns poluentes e aumento de outros. O biodiesel é um combustível alternativo e o desempenho e as emissões do motor não podem ser garantidos se o mesmo utilizar este combustível.
Uma mistura de combustíveis biodiesel e diesel de qualidade na razão de até 20% de concentração de volume não deverá causar problemas graves. Concentrações acima de 20% podem causar vários problemas operacionais.


Gás Natural
• Para a maioria das instalações, o armazenamento deve ser feito fora do local.
• O gás natural pode ser uma opção econômica de combustível quando disponível nas taxas de fluxo e pressão exigidos.
• Um suprimento de reserva de GLP combustível pode ser necessário para sistemas de fornecimento de energia elétrica de emergência. O gás natural pode ser utilizado em campo com certos grupos geradores. Entretanto, devem ser feitas análises do combustível e consultas com o fabricante do motor para se determinar o despotenciamento e também se a composição do combustível acarretará danos ao motor devido à fraca combustão, detonação ou corrosão.
• Poderão ocorrer danos e detonação do motor quando algumas empresas ocasionalmente adicionam butano para manter a pressão da linha. Os motores a gás natural requerem tubulações limpas e secas, gás de qualidade para gerar a potência nominal e assegurar uma vida útil ideal ao motor.
• A estabilidade de freqüência de grupos geradores com motores de ignição por vela pode não ser tão boa quanto a dos grupos geradores com motores diesel. Uma boa estabilidade de freqüência é importante na alimentação de cargas UPS.
• Climas frios – Em temperaturas ambientes abaixo de –7ºC, os motores com ignição por vela geralmente são mais fáceis de partir e aceitam carga mais rapidamente do que os motores diesel.


GLP (Gás Liquefeito de Petróleo)
• A disponibilidade local de GLP deverá ser investigada e confirmada antes de se optar por um grupo gerador com motor a GLP.
• Devem ser providenciados recursos para o armazenamento local de combustível. O GLP pode ser armazenado indefinidamente.
• A estabilidade de freqüência de grupos geradores acionados por motores com ignição por vela pode não ser tão boa quanto a dos grupos geradores com motores a diesel. Esta é uma consideração importante para a alimentação de cargas UPS.
• Climas frios – O tanque de armazenamento de GLP deve ser dimensionado para fornecer a taxa necessária de vaporização na temperatura ambiente mais baixa esperada, ou ser providenciada a retirada de líquido com um aquecedor.

Gasolina

A gasolina não é um combustível adequado para grupos geradores standby estacionários devido à sua volatilidade e prazo de validade.


Combustíveis Alternativos
Em geral, os motores a diesel podem funcionar com combustíveis alternativos com lubricidade aceitável durante os períodos em que o fornecimento do combustível diesel Nº 2-D esteja temporariamente limitado. O uso de combustíveis alternativos pode afetar a cobertura de garantia, o desempenho e as emissões do motor. Os combustíveis alternativos abaixo geralmente estão dentro dos limites prescritos:
• Combustível diesel 1-D e 3-D
• Óleo combustível de Grau 2 (combustível de aquecimento)
• Combustível para turbinas de aviões, Grau Jato A e Jato A-1 (combustível para jatos comerciais)
• Combustível para turbinas a gás para aplicações não aeronáuticas, Grau 1 GT e 2 GT
• Querosene Grau 1-K e 2-K
Bookmark and Share

04 novembro 2009

Redução de Ruídos em Aplicações de Grupos Geradores

Unidades de Medida do Nível do Ruído e Decibéis/dB(A): A unidade de medida do som é o decibel (dB). O decibel é um número em escala logarítma que expressa a relação entre duas pressões de som comparando a pressão real com uma pressão de referência.
As regulamentações de ruídos geralmente são escritas em termos de “decibéis escala ‘A’” ou dB(A). O “A” indica que a escala foi “ajustada” para um valor aproximado como uma pessoa percebe a intensidade do som.A intensidade depende do nível de pressão (amplitude) e da freqüência do som. A Figura abaixo mostra os níveis típicos de ruídos associados com vários ambientes e fontes.

Os dados precisos e significativos do nível do som são medidos preferencialmente em “campo aberto” para coletar os dados de ruídos. Um “campo aberto”, ao contrário de um “campo reverberante”, é um campo sonoro no qual os efeitos de obstáculos ou limitações à propagação do som no campo são insignificantes. (Geralmente isto significa que os objetos ou barreiras estão longe demais, não interferem na área do teste e/ou estão cobertos com materiais adequados para a absorção do som.) Medições precisas de ruídos também requerem que o microfone seja colocado externamente ao “campo vizinho”.
O “campo vizinho” é definido como a região dentro de um comprimento de onda, ou duas vezes a maior dimensão da fonte de ruído, o que for maior. As medições de ruídos para regulamentações de comunidades não devem ser feitas no campo vizinho. As especificações de Engenheiros sobre ruídos devem requerer medições do nível de intensidade sonora em campo aberto @ 7 metros ou mais.
As medições de ruído devem ser feitas utilizando-se um medidor do nível de som e analisador de oitava banda para análise mais detalhada por consultores acústicos. Os microfones são colocados em um círculo de raio de 7 metros com o centro no grupo gerador; uma distância suficiente para este tipo e tamanho de equipamento.


Níveis de Sons Adicionais: O nível de ruído em um dado local é a soma dos níveis de ruído de todas as fontes, inclusive das fontes refletoras. Por exemplo, o nível de ruído em um ponto de um campo aberto eqüidistante de dois grupos geradores idênticos é o dobro quando ambos os grupos estão funcionando. O dobro do nível de ruído é representado como um aumento de cerca de 3 dB(A). Neste caso, se o nível de ruído de apenas um dos grupos gerador for de 90 dB(A), pode-se esperar uma medição de 93 dB(A) quando ambos os grupos geradores estiverem funcionando. A Figura abaixo pode ser utilizada, como segue, para estimar o nível de ruído de várias fontes de ruído:

1. Determine a diferença em dB(A) entre duas das fontes (qualquer par). Localize o valor na escala horizontal, suba até encontrar a curva, como mostra a seta vertical, e veja o valor na escala vertical, como mostra a seta horizontal. Some este valor ao maior valor de dB(A) do par.
2. Repita o Passo 1 entre o valor recém-determinado e o próximo valor. Repita o processo para todas as fontes.
Por exemplo, para somar 89 dB(A), 90,5 dB(A) e 92 dB(A):
– Subtraia 90,5 dB(A) de 92 dB(A) e obtenha uma diferença de 1,5 dB(A). Como mostram as setas no grafico acima, o correspondente à diferença de 1,5 dB(A) é o valor 2,3 dB(A), que deve ser somado a 92 dB(A), resultando num total de 94,3 dB(A).
– Da mesma forma, subtraia 9 dB(A) do novo valor de 94,3 dB(A) e obtenha a diferença de 5,3 dB(A).
– Finalmente, some o valor correspondente de 1,1 dB(A) ao valor 94,5 dB(A) e obtenha um total de 95,6 dB(A).
Como alternativa, a seguinte fórmula pode ser utilizada para somar os níveis de intensidade sonora medidos em dB(A):


Efeito da Distância: Em um “campo aberto”, o nível do som diminui à medida que a distância aumenta. Se, por exemplo, uma segunda medição de som for feita duas vezes em relação à fonte, a segunda leitura será cerca de 6 dB(A) menor que a primeira (quatro vezes menos). Se a distância for reduzida à metade, a segunda medição será cerca de 6 dB(A) maior (quatro vezes mais). Para o caso mais geral, se o nível de intensidade do som (SPL1) de uma fonte na distância d1 for conhecido, o nível de intensidade do som (SPL2) na distância d2 pode ser determinado como segue:
Por exemplo, se o nível de intensidade do som (SPL1) em 21 metros (d1) for 100 dB(A), em 7 metros (d2) o nível de intensidade do som (SPL2) será:

Para aplicar a fórmula de distância (acima) aos dados do grupo gerador publicados pela Cummins Power Generation, o nível de ruído de fundo deverá ser de pelo menos 10 dB(A) menor que o nível de ruído do grupo gerador e a instalação deverá aproximar-se de um ambiente de campo aberto.
A Figura abaixo pode ser usada como alternativa da fórmula para se estimar o nível do som em várias distâncias, como as linhas da propriedade. Por exemplo, como mostram as setas tracejadas, se a classificação de ruído na Spec Sheet do grupo gerador recomendado for 95 dB(A) (a 7 metros), o nível de ruído a 100 metros de distância será de aproximadamente 72 dB(A).



Para utilizar o grafico acima, trace uma linha paralela às linhas inclinadas partindo do valor conhecido em dB(A) no eixo vertical até a linha vertical da distância especificada. Em seguida, trace uma linha horizontal até o eixo vertical e leia o novo valor em dB(A).

Bookmark and Share

25 outubro 2009

Sistema de Escape para Grupos Geradores


A função do sistema de escape em um Grupo Gerador é conduzir com segurança os gases de escape do motor para fora do edifício e dispersar a fumaça, a fuligem e isolar o ruído do escape de pessoas e edifícios. O sistema de escape deve ser projetado para minimizar a contrapressão no motor. A restrição excessiva ao escape resultará em aumento no consumo de combustível, em temperaturas anormalmente altas do escape, em falhas relativas a altas temperaturas do escape e em excesso de fumaça preta. O projeto do sistema de escape deverá considerar:

  • A tubulação de escape pode ser um tubo de ferro preto de bitola 40. Outros materiais aceitáveis incluem sistemas de escape pré-fabricados de aço inoxidável. 
  • Uma tubulação de escape em aço inoxidável flexível e corrugado sem costura com pelo menos 610 mm de comprimento deve ser conectada na(s) saída(s) de escape do motor para permitir a expansão térmica e o movimento e vibração do grupo gerador sempre que este estiver montado sobre isoladores de vibração. Os grupos geradores menores com isolamento de vibração integrado e parafusados diretamente no solo devem ser conectados por tubulações de escape de aço inoxidável corrugado sem costura com pelo menos 457 mm de comprimento. A tubulação flexível de escape não deve ser usada para formar dobras ou para compensar o alinhamento incorreto da tubulação de escape.
  • Os grupos geradores podem ser fornecidos com conexões de escape tipo roscada, deslizante ou flange. As conexões roscadas ou flangeadas são menos sujeitas a vazamentos mas seu custo de instalação é maior.
  • Ganchos ou suportes isoladores não-inflamáveis devem suportar os silenciosos e a tubulação. O peso na saída de escape do motor pode causar danos ao coletor de escape do motor ou reduzir a vida do turbocompressor (quando utilizado) e pode fazer que a vibração do grupo gerador seja transmitida à estrutura do edifício. O uso de montantes com isoladores limitam ainda mais a indução da vibração na estrutura do edifício. 
  • Para reduzir a corrosão devida à condensação, deve ser instalado um silencioso tão próximo quanto possível do motor para que este aqueça rapidamente. A localização do silencioso próximo ao motor também melhora a atenuação sonora do silencioso. Os raios de curvas do tubo devem ser os mais longos possíveis.
  • O tubo de escape deve ser do mesmo diâmetro nominal que a saída de escape do motor (ou mais largo) em todo o sistema de escape. Certifique-se de que a tubulação tenha diâmetro suficiente para limitar a contrapressão de escape num valor dentro da classificação do motor utilizado. (Motores diferentes têm tamanhos de escape diferentes e limitações de contrapressão diferentes.) Nunca use uma tubulação de diâmetro menor que a saída de escape. Uma tubulação mais larga que o necessário está mais sujeita à corrosão devido à condensação do que uma tubulação mais estreita. Tubos excessivamente largos também reduzem a velocidade de escape dos gases para dispersão na atmosfera.
  • Todos os componentes do sistema de escape do motor devem incluir barreiras para evitar o contato acidental. A tubulação de escape e os silenciosos devem ser isolados termicamente para evitar queimaduras por contato acidental, evitar o acionamento de dispositivos de detecção de incêndio e borrifadores, reduzir a corrosão devida à condensação e reduzir a quantidade de calor irradiado para a sala do gerador. As juntas de expansão, os coletores de escape do motor e as carcaças de turbocompressores nunca devem ser isolados, a menos que arrefecidos pelo líquido de arrefecimento. O isolamento de coletores de escape e turbocompressores pode resultar em temperaturas que podem destruir estes componentes, especialmente em aplicações onde o motor funcione durante um grande número de horas. A instalação da tubulação de escape pelo menos 2,3 metros acima do solo também ajuda a evitar o contato acidental com o sistema de escape.
  • A tubulação de escape deve ser instalada pelo menos 230 mm distante de construções inflamáveis. Em aplicações nas quais a tubulação de escape deve passar através de paredes ou tetos inflamáveis, use ilhóses aprovados. A direção da saída do sistema de escape também deve ser considerada com atenção. O escape nunca deve ser direcionado para o teto de um edifício ou superfícies inflamáveis. O escape de um motor diesel é quente e contém fuligem e outros contaminantes que podem aderir nas superfícies vizinhas.
  • Instale a saída do escape e direcione-a para fora das entradas de ar de ventilação.
  • Se o ruído for um problema, direcione a saída do escape para fora dos locais críticos.
  • O tubo de escape (aço) dilata-se cerca de 1,14 mm por metro de tubo para cada aumento de 100º C da temperatura do gás de escape em relação à temperatura ambiente. É necessário utilizar juntas de expansão do escape para absorver as dilatações ao longo do tubo. As juntas de expansão devem ser colocadas em cada ponto que o tubo de escape muda de direção. O sistema de escape deve ser suportado de modo que as dilatações sejam direcionadas para longe do grupo gerador. As temperaturas do escape sãofornecidas pelo fabricante do motor ou do grupo gerador para o motor específico utilizado.
  • As saídas horizontais da tubulação de escape devem ser voltadas para baixo, longe do motor, para as portas de saída ou para um purgador de condensação.
  • Um coletor de condensação e um bujão devem ser colocados em pontos onde a tubulação eleva-se verticalmente para cima. Coletores de condensação também podem ser instalados com um silencioso. Os procedimentos de manutenção para o grupo gerador devem incluir a drenagem periódica da condensação do sistema de escape.
  • Devem ser fornecidas provisões para evitar a entrada de chuva no sistema de escape de um motor que não esteja funcionando. Isto pode incluir uma tampa ou proteção nas saídas verticais do escape. As saídas horizontais do escape devem ser cortadas em ângulo e protegidas com redes. Em ambientes frios as tampas podem congelar e fechar e impedir o funcionamento do motor, de modo que outros dispositivos de proteção
    podem ser melhores opções nestas situações.
  • A contrapressão do escape não deve exceder à contrapressão permitida especificada pelo fabricante do motor. A contrapressão excessiva do escape reduz a potência e a vida do motor e pode resultar em altas temperaturas do escape e em fumaça. A contrapressão do escape do motor deve ser estimada antes da conclusão da disposição do sistema de escape e deve ser medida na saída do escape com o motor funcionando sob carga plena antes que o grupo seja colocado em serviço.
  • Consulte a postagem sobre Silenciosos do Escape para informações sobre os silenciosos de escape e os vários critérios de seleção para estes dispositivos.

    ADVERTÊNCIA: O escape do motor contém fuligem e monóxido de carbono, um gás invisível, inodoro e tóxico. O sistema de escape deve terminar na parte externa do edifício em um local onde os gases de escape do motor sejam dispersados para longe de edifícios e de entradas de ar. É altamente recomendável que o sistema de escape seja dirigido para cima, tão alto quanto possível, no lado dos ventos dominantes para que a dispersão dos gases de escape seja maximizada. Os gases de escape também devem ser conduzidos para o lado de descarga de ar do radiador para reduzir a possibilidade de retornarem à a sala do grupo
    gerador por força do ar de ventilação.


    NOTA: Algumas normas especificam que a saída dos gases de escape termine a uma distância de pelo menos 3 metros da linha da propriedade, 1 metro de uma parede externa ou teto, 3 metros de aberturas no edifício e pelo menos 3 metros acima de terrenos inclinados contíguos.
Bookmark and Share