Mostrando postagens com marcador Suporte na Escolha do Grupo Gerador. Mostrar todas as postagens
Mostrando postagens com marcador Suporte na Escolha do Grupo Gerador. Mostrar todas as postagens

25 outubro 2009

Sistema de Escape para Grupos Geradores


A função do sistema de escape em um Grupo Gerador é conduzir com segurança os gases de escape do motor para fora do edifício e dispersar a fumaça, a fuligem e isolar o ruído do escape de pessoas e edifícios. O sistema de escape deve ser projetado para minimizar a contrapressão no motor. A restrição excessiva ao escape resultará em aumento no consumo de combustível, em temperaturas anormalmente altas do escape, em falhas relativas a altas temperaturas do escape e em excesso de fumaça preta. O projeto do sistema de escape deverá considerar:

  • A tubulação de escape pode ser um tubo de ferro preto de bitola 40. Outros materiais aceitáveis incluem sistemas de escape pré-fabricados de aço inoxidável. 
  • Uma tubulação de escape em aço inoxidável flexível e corrugado sem costura com pelo menos 610 mm de comprimento deve ser conectada na(s) saída(s) de escape do motor para permitir a expansão térmica e o movimento e vibração do grupo gerador sempre que este estiver montado sobre isoladores de vibração. Os grupos geradores menores com isolamento de vibração integrado e parafusados diretamente no solo devem ser conectados por tubulações de escape de aço inoxidável corrugado sem costura com pelo menos 457 mm de comprimento. A tubulação flexível de escape não deve ser usada para formar dobras ou para compensar o alinhamento incorreto da tubulação de escape.
  • Os grupos geradores podem ser fornecidos com conexões de escape tipo roscada, deslizante ou flange. As conexões roscadas ou flangeadas são menos sujeitas a vazamentos mas seu custo de instalação é maior.
  • Ganchos ou suportes isoladores não-inflamáveis devem suportar os silenciosos e a tubulação. O peso na saída de escape do motor pode causar danos ao coletor de escape do motor ou reduzir a vida do turbocompressor (quando utilizado) e pode fazer que a vibração do grupo gerador seja transmitida à estrutura do edifício. O uso de montantes com isoladores limitam ainda mais a indução da vibração na estrutura do edifício. 
  • Para reduzir a corrosão devida à condensação, deve ser instalado um silencioso tão próximo quanto possível do motor para que este aqueça rapidamente. A localização do silencioso próximo ao motor também melhora a atenuação sonora do silencioso. Os raios de curvas do tubo devem ser os mais longos possíveis.
  • O tubo de escape deve ser do mesmo diâmetro nominal que a saída de escape do motor (ou mais largo) em todo o sistema de escape. Certifique-se de que a tubulação tenha diâmetro suficiente para limitar a contrapressão de escape num valor dentro da classificação do motor utilizado. (Motores diferentes têm tamanhos de escape diferentes e limitações de contrapressão diferentes.) Nunca use uma tubulação de diâmetro menor que a saída de escape. Uma tubulação mais larga que o necessário está mais sujeita à corrosão devido à condensação do que uma tubulação mais estreita. Tubos excessivamente largos também reduzem a velocidade de escape dos gases para dispersão na atmosfera.
  • Todos os componentes do sistema de escape do motor devem incluir barreiras para evitar o contato acidental. A tubulação de escape e os silenciosos devem ser isolados termicamente para evitar queimaduras por contato acidental, evitar o acionamento de dispositivos de detecção de incêndio e borrifadores, reduzir a corrosão devida à condensação e reduzir a quantidade de calor irradiado para a sala do gerador. As juntas de expansão, os coletores de escape do motor e as carcaças de turbocompressores nunca devem ser isolados, a menos que arrefecidos pelo líquido de arrefecimento. O isolamento de coletores de escape e turbocompressores pode resultar em temperaturas que podem destruir estes componentes, especialmente em aplicações onde o motor funcione durante um grande número de horas. A instalação da tubulação de escape pelo menos 2,3 metros acima do solo também ajuda a evitar o contato acidental com o sistema de escape.
  • A tubulação de escape deve ser instalada pelo menos 230 mm distante de construções inflamáveis. Em aplicações nas quais a tubulação de escape deve passar através de paredes ou tetos inflamáveis, use ilhóses aprovados. A direção da saída do sistema de escape também deve ser considerada com atenção. O escape nunca deve ser direcionado para o teto de um edifício ou superfícies inflamáveis. O escape de um motor diesel é quente e contém fuligem e outros contaminantes que podem aderir nas superfícies vizinhas.
  • Instale a saída do escape e direcione-a para fora das entradas de ar de ventilação.
  • Se o ruído for um problema, direcione a saída do escape para fora dos locais críticos.
  • O tubo de escape (aço) dilata-se cerca de 1,14 mm por metro de tubo para cada aumento de 100º C da temperatura do gás de escape em relação à temperatura ambiente. É necessário utilizar juntas de expansão do escape para absorver as dilatações ao longo do tubo. As juntas de expansão devem ser colocadas em cada ponto que o tubo de escape muda de direção. O sistema de escape deve ser suportado de modo que as dilatações sejam direcionadas para longe do grupo gerador. As temperaturas do escape sãofornecidas pelo fabricante do motor ou do grupo gerador para o motor específico utilizado.
  • As saídas horizontais da tubulação de escape devem ser voltadas para baixo, longe do motor, para as portas de saída ou para um purgador de condensação.
  • Um coletor de condensação e um bujão devem ser colocados em pontos onde a tubulação eleva-se verticalmente para cima. Coletores de condensação também podem ser instalados com um silencioso. Os procedimentos de manutenção para o grupo gerador devem incluir a drenagem periódica da condensação do sistema de escape.
  • Devem ser fornecidas provisões para evitar a entrada de chuva no sistema de escape de um motor que não esteja funcionando. Isto pode incluir uma tampa ou proteção nas saídas verticais do escape. As saídas horizontais do escape devem ser cortadas em ângulo e protegidas com redes. Em ambientes frios as tampas podem congelar e fechar e impedir o funcionamento do motor, de modo que outros dispositivos de proteção
    podem ser melhores opções nestas situações.
  • A contrapressão do escape não deve exceder à contrapressão permitida especificada pelo fabricante do motor. A contrapressão excessiva do escape reduz a potência e a vida do motor e pode resultar em altas temperaturas do escape e em fumaça. A contrapressão do escape do motor deve ser estimada antes da conclusão da disposição do sistema de escape e deve ser medida na saída do escape com o motor funcionando sob carga plena antes que o grupo seja colocado em serviço.
  • Consulte a postagem sobre Silenciosos do Escape para informações sobre os silenciosos de escape e os vários critérios de seleção para estes dispositivos.

    ADVERTÊNCIA: O escape do motor contém fuligem e monóxido de carbono, um gás invisível, inodoro e tóxico. O sistema de escape deve terminar na parte externa do edifício em um local onde os gases de escape do motor sejam dispersados para longe de edifícios e de entradas de ar. É altamente recomendável que o sistema de escape seja dirigido para cima, tão alto quanto possível, no lado dos ventos dominantes para que a dispersão dos gases de escape seja maximizada. Os gases de escape também devem ser conduzidos para o lado de descarga de ar do radiador para reduzir a possibilidade de retornarem à a sala do grupo
    gerador por força do ar de ventilação.


    NOTA: Algumas normas especificam que a saída dos gases de escape termine a uma distância de pelo menos 3 metros da linha da propriedade, 1 metro de uma parede externa ou teto, 3 metros de aberturas no edifício e pelo menos 3 metros acima de terrenos inclinados contíguos.
Bookmark and Share

17 outubro 2009

Software para Dimensionamento de Grupos Geradores (ATUALIZADO)

Por favor, utilizem a nova versão online lançada a poucas semanas pela Cummins! O PowerSuite 5.0 tem recursos superiores e irá ajudá-lo com certeza!


GenSize™ é um software aplicativo fornecido pela Cummins Power Generation para determinar o tamanho correto (capacidade) de grupos geradores para aplicações de energia Standby ou Prime. Todas as informações necessárias para a configuração correta de grupo gerador estão incluídas na recomendação preparada pelo software.
Com o GenSize você pode criar, salvar, acessar, modificar e excluir informações de um projeto. As informações de carga podem ser copiadas e coladas em um ou vários projetos. O GenSize suporta a maioria dos tipos de carga, inclusive vários tipos de iluminação, HVAC, Carga de Bateria, UPS, motores, Bombas de Incêndio e aplicação de cargas gerais. Existe uma área de carga definida pelo usuário para a entrada de características de uma única carga.
O GenSize permite controlar corretamente cargas de soldas, cíclicas e de equipamentos médicos de imagens (onde o pico de carga ocorre depois da partida de todas as cargas e não durante a seqüência de partida).
NOTA: Se usar o GenSize para dimensionar um grupo gerador de um fabricante diferente da Cummins Power Generation, esteja ciente de que grupos geradores de outros fabricantes, mesmo que tenham a mesma potência (kW),podem não ser adequados para uma dada aplicação devido às diferenças de desempenho.
O projetista do sistema de energia pode minimizar o risco desta situação especificando um grupo gerador com elevação de temperatura do alternador, reatância de subtransiente de alternador por unidade, harmônicos e desempenho de transiente do governador semelhantes.
Além de ser uma ferramenta para visualizar dados de desempenho do grupo gerador, o GenSize inclui uma interface gráfica fácil de usar para a entrada de informações sobre as cargas aplicadas no grupo gerador, a seqüência de passos de partida das cargas e parâmetros do próprio grupo gerador. Embora não haja um manual específico do GenSize, os arquivos de Ajuda sensível ao contexto são suficientes para executar o aplicativo.
No GenSize, o projeto como um todo é exibido no lado esquerdo e o lado direito mostra o conteúdo de qualquer nó selecionado no lado esquerdo. Este é o coração da aplicação onde as cargas e as seqüências são informadas e
definidas.


Caso algum dos leitores do blog tenham interesse em receber por email o link para baixar o CD do Software GenSize™, por favor, inscrevam-se no site atraves do formulario ao lado e recebam a informacao instantaneamente.

Por favor leiam uma atualização referente ao software de dimensionamento de grupos geradores!



Bookmark and Share

15 outubro 2009

Desempenho do Silencioso do Escape


Normalmente, os grupos geradores são equipados com um silencioso de escape para limitar os ruídos no escape da máquina. Existe uma ampla variedade de tipos, arranjos físicos e materiais de silenciosos de escape.
Os silenciosos geralmente são agrupados em dispositivos do tipo câmara ou do tipo espiral. Os dispositivos do tipo câmara podem ser mais eficientes, mas os do tipo espiral são menores fisicamente e podem ter um desempenho adequado para a aplicação.
Os silenciosos podem ser construídos em aço laminado a frio ou em aço inoxidável. Os silenciosos em aço laminado a frio são mais baratos, mas mais susceptíveis à corrosão do que os silenciosos em aço inoxidável. Para aplicações onde o silencioso é montado externamente e protegido com isolamento (térmica) para limitar a dissipação do calor, há uma pequena vantagem em relação ao de aço inoxidável.
Os silenciosos podem ser fornecidos nas seguintes configurações físicas:
• Entrada na extremidade/saída na extremidade;provavelmente a configuração mais comum.
• Entrada lateral/saída na extremidade; freqüentemente usada para ajudar a limitar os requisitos de altura do teto para um grupo gerador.
• Entrada em dois lados/saída na extremidade; usada em motores em “V” para eliminar a necessidade de um cabeçote de escape e minimizar os requisitos de altura do teto.
Os silenciosos são fornecidos em vários “graus” diferentes de atenuação de ruído; comumente chamados: industrial, residencial e crítico (hospitalar). Note que o escape de um grupo gerador pode não ser a maior fonte de ruído da máquina. Se o ruído mecânico for significativamente maior que o ruído do escape, a escolha de um silencioso de maior desempenho poderá não melhorar o nível do ruído presente no local.
Em geral, quanto mais eficiente na redução dos ruídos do escape um silencioso, maior será o nível de restrição do escape ao motor. Para sistemas com longos escapes, o próprio tubo fornecerá alguma atenuação.
 

Atenuações Típicas de Silenciosos
Silenciosos Industriais: 12-18 dB(A)
Silenciosos Residenciais: 18-25 dB(A)
Silenciosos Críticos: 25-35 dB(A)

Bookmark and Share

30 setembro 2009

Fabricantes de Grupos Geradores de Grande Porte



 

 

Fabricantes de Grupos Geradores de Pequeno Porte










Bookmark and Share

Projeto da Sala do Grupo Gerador


Os grupos geradores devem ser instalados de acordo com as instruções fornecidas pelo seu fabricante e de acordo com as normas e padrões aplicáveis. Leia abaixo algumas diretrizes gerais para o projeto da sala do grupo gerador:
• A maioria dos grupos geradores requer acesso de serviço em ambos os lados do motor e na extremidade do controle/alternador da máquina. As normas elétricas locais podem exigir áreas específicas de trabalho para equipamentos elétricos, mas em geral, permitem uma área de trabalho igual à largura do grupo gerador em ambos os lados e na parte posterior.
• A localização do sistema de combustível ou dos componentes do sistema de distribuição elétrica pode requerer espaço adicional de trabalho. 

• Deve haver acesso para a sala do grupo gerador (ou gabinete externo) que permita que os maiores componentes do equipamento possam ser removidos (geralmente o motor). O acesso pode ser feito através de portas ou por defletores de ar removíveis de admissão ou de escape. Um projeto ideal permitirá movimentar o grupo gerador como um conjunto pela sala do equipamento.
 


Instalações no Telhado: Com custos cada vez maiores de construção, está se tornando cada vez mais comum instalar grupos geradores nos telhados de edifícios. Isto pode ser feito com sucesso se a estrutura do edifício estiver preparada para suportar o peso do grupo gerador e dos componentes associados.
Veja a seguir as vantagens e desvantagens gerais de tais instalações.


Vantagens
• Ventilação de ar ilimitada para o sistema.
• Nenhuma (ou pequena) necessidade de trabalho com dutos de ventilação.
• Escapamentos curtos.
• Poucas fontes de ruído (podendo ainda requerer gabinete com atenuação de som).
• Poucas limitações de espaço
• O grupo gerador é isolado dos serviços normais, para uma melhor confiabilidade do sistema.
Desvantagens
• A estrutura do teto poderá necessitar de reforço para suportar o grupo gerador.
• A instalação do equipamento no telhado poderá ser cara (grua ou desmontagem).
• Restrições de normas

• Cabos mais longos
• Armazenamento limitado do combustível no grupo gerador; o suprimento do combustível (e possivelmente o retorno) deverá ser feito através do edifício.
• Maior dificuldade de serviços no grupo gerador.
 

Nota: Mesmo que o grupo gerador esteja montado no telhado, deve-se tomar cuidado com o escape do motor para evitar a contaminação dos dutos de entrada de ar para o edifício, ou propriedades adjacentes. Veja artigo sobre Ventilação no Blog Grupos Geradores. Recomenda-se que os grupos geradores com limitações de acesso de serviços sejam equipados com uma conexão de banco de carga dentro do sistema de distribuição do edifício. Isto permitirá que os bancos de carga sejam temporariamente conectados num local conveniente. Caso contrário, a dificuldade para conectar um banco de carga poderá prejudicar ou até mesmo impedir o teste apropriado
do grupo gerador.



Bookmark and Share

28 setembro 2009

Ventilação da Sala de Grupos Geradores


A ventilação da sala do gerador é necessária para remover o calor dissipado pelo motor, alternador e outros equipamentos geradores de calor do grupo gerador, bem como para remover gases potencialmente perigosos de escape e fornecer o ar para a combustão. Um projeto de ventilação inadequada resulta em altas temperaturas ao redor do grupo gerador, o que pode elevar o consumo de combustível, reduzir o desempenho do grupo gerador, causar falhas prematuras dos componentes e superaquecer o motor, além de oferecer más condições de trabalho no ambiente da máquina.
A escolha dos locais de entrada e de saída da ventilação é crítica para o funcionamento correto do sistema. O ideal é que a admissão e o escape permitam que o ar de ventilação seja forçado para fluir através de toda a sala do gerador. Os efeitos dos ventos predominantes devem ser levados em conta ao se definir a localização da saída do ar. Estes efeitos podem reduzir  seriamente o desempenho do radiador montado no chassi. Se a velocidade e a direção do vento for uma questão a ser considerada, poder ser utilizados anteparos ou barreiras para impedir que o evitar o vento sopre contra a saída do ar de escape do motor (Veja figura). Deve-se evitar também que os gases de escape da ventilação penetrem numa área de recirculação de um edifício, formada pelos ventos dominantes.
O ar de ventilação poluído com poeira, partículas ou outros materiais pode exigir filtros especiais no motor e/ou no alternador para operação e arrefecimento corretos, principalmente em aplicações de energia prime. Consulte o fabricante sobre o uso de grupos geradores em ambientes com contaminação química.
Os sistemas de ventilação do cárter do motor podem expelir ar misturado com óleo na sala do grupo gerador. O óleo pode ser depositado nos radiadores ou outros equipamentos de ventilação, impedindo seu funcionamento. O uso de coletores de respiro do cárter ou a ventilação do cárter para o exterior é a melhor prática.
Deve-se dar atenção à velocidade do ar de admissão na sala do grupo gerador. Se a taxa de fluxo de ar for muito alta, os grupos geradores tenderão a "sugar" chuva para a sala do grupo gerador quando estiverem funcionando. Um bom projeto deve ter como meta limitar a velocidade do ar de entrada entre 150-220 m/min. Em climas frios, o ar de saída do radiador pode ser recirculado para modular a temperatura do ar na sala do grupo gerador. Isto ajudará o grupo gerador a aquecer mais rapidamente e manterá a temperatura do combustível a uma temperatura mais alta do que a de seu ponto de névoa. Se forem utilizados defletores de recirculação, estes deverão ser projetados de modo que possa haver "fail close", com os defletores principais de saída abertos, de modo que o grupo gerador possa continuar funcionando quando necessário. Os projetistas devem estar cientes de que a temperatura de operação na sala do grupo gerador estará muito próxima da temperatura externa (fria) e, portanto, não deverão instalar tubos d'água através do grupo gerador ou deverão protegê-lo contra a formação de gelo. À medida que o ar de ventilação flui através de uma sala de equipamento, sua temperatura aumenta gradualmente, especialmente se passar através do grupo gerador.  Isto pode gerar confusão quanto às classificações de temperatura do grupo gerador e do sistema geral. A prática dos maiores fabricantes é classificar o sistema de arrefecimento com base na temperatura ambiente em torno do alternador. O aumento da temperatura na sala é a diferença entre a temperatura medida no alternador e a temperatura externa. A temperatura na colméia do radiador não tem impacto no projeto do sistema uma vez que o calor do radiador é dissipado diretamente para fora da sala do equipamento.

Um bom projeto para aplicações standby deve manter a temperatura na sala do equipamento no máximo em 50ºC. Entretanto, limitar a temperatura na sala do grupo gerador em 40ºC permite equipar o grupo gerador com um radiador montado no chassi menor e mais barato, além de eliminar a necessidade de despotenciamento do motor devido a temperaturas elevadas do ar de combustão. Certifique-se de que as especificações do projeto do grupo gerador descrevam plenamente as premissas utilizadas no projeto do sistema de ventilação do grupo gerador.
A grande questão então é: “Qual é a temperatura externa máxima na qual o grupo gerador deverá funcionar?” Esta é simplesmente uma questão da temperatura ambiente máxima na região geográfica onde o grupo gerador for instalado. Em algumas áreas ao norte dos EUA, por exemplo, a temperatura máxima dificilmente ultrapassa 35
ºC. Assim, um projetista poderá selecionar os componentes do sistema de ventilação com base em uma elevação de temperatura de -10ºC com um sistema de arrefecimento do grupo gerador de 40ºC, ou com base em uma elevação de temperatura de 1ºC com um sistema de arrefecimento do gerador de 45ºC.
A chave para o funcionamento correto do sistema assegurar que as decisões sobre a temperatura máxima de funcionamento e sobre a elevação de temperatura sejam tomadas com cuidado e que o fabricante do grupo gerador projete o sistema de arrefecimento (não apenas o radiador) para as temperaturas e ventilação necessárias. O resultado de um projeto de sistema impróprio é que o grupo gerador superaquecerá quando a temperatura ambiente e a carga no grupo gerador forem altas. Em temperaturas mais baixas ou em níveis de carga menores, o sistema pode funcionar apropriadamente.





Bookmark and Share

22 setembro 2009

Carenagens (Conteiners) para Grupos Geradores

As carenagens podem ser classificadas em três tipos gerais: carenagens de proteção contra intempéries, acústicas e com passarelas. Os nomes são autoexplicativos.

Proteção Contra Intempéries: As carenagens protegem o grupo gerador, tanto contra intempéries quanto contra violação, pois são fornecidas com fechaduras. Defletores ou painéis perfurados incorporados permitem a passagem do fluxo de ar para ventilação e arrefecimento. Pouca ou nenhuma atenuação de ruídos é obtida e às vezes pode haver aumento do nível de ruídos induzidos pela vibração. Tais tipos de carenagens não retêm calor nem mantêm a temperatura acima da ambiente.
Acústica: As carenagens com atenuação sonora são especificadas em função de uma determinada quantidade de atenuação de ruídos ou de uma classificação do nível externo de ruídos. Os níveis de ruído devem ser especificados com base em uma dada distância e para se comparar os níveis de ruído todas as especificações devem ser convertidas na mesma distância básica. A atenuação sonora requer material e espaço, portanto, esteja certo de que as unidades indicadas nos desenhos incluam as informações corretas da carenagem acústica. Embora alguns destes projetos de carenagens tenham alguma capacidade de isolamento para reter calor, esta não é a intenção do projeto. Se for necessária a manutenção acima da temperatura ambiente, será preciso uma carenagem com passarela.
Carenagem Especial: Este tipo engloba uma ampla variedade de carenagens que são fabricadas de acordo com  as especificações de cada cliente. Geralmente, essas carenagens incluem atenuação sonora, comutação de energia e equipamento de monitoração, pára-raios, sistemas de proteção contra incêndios, tanques de combustível e outros equipamentos. Estes tipos de carenagens são construídas como unidades simples, sem cobertura, e como unidades integradas com grandes portas ou painéis removíveis para acesso de serviços. Estas carenagens podem ser construídas com recursos de isolamento e aquecimento.


Nota: A instalação de carenagens externas (especialmente carenagens acústicas) dentro de edifícios não é uma prática recomendada por duas razões principais. Primeira, as carenagens acústicas usam a capacidade de restrição do excesso de ventilação para reduzir ruídos através de deflexão da ventilação. Conseqüentemente, resta uma pequena ou nenhuma capacidade de restrição para quaisquer dutos de ar, defletores ou outros equipamentos que invariavelmente acrescentarão restrição. Segunda, os sistemas de escape de carenagens externas não são necessariamente sistemas selados, ou seja, possuem abraçadeiras, juntas de encaixe deslizante no lugar de conexões rosqueadas ou flangeadas. Essas conexões com abraçadeiras podem permitir que o gás de escape vaze para a sala.
Bookmark and Share

Baterias e Carregadores de Bateria para Grupos Geradores


Talvez o subsistema mais crítico de um grupo gerador seja o sistema da baterias para a partida do motor e controle do grupo gerador. A escolha e a manutenção corretas das baterias e do carregador de bateria são essenciais para a confiabilidade do sistema. O sistema consiste de baterias, racks de baterias, um carregador de bateria que é acionado pela fonte normal de energia elétrica durante o tempo em que o grupo gerador estiver em espera (standby), e um alternador de carga das baterias acionado por motor que carrega as baterias e fornece a energia CC para o sistema de controle quando o grupo gerador estiver funcionando.
Quando os grupos geradores estão em paralelo, os bancos de baterias de cada grupo gerador geralmente são colocados em paralelo para fornecer a energia de controle para o sistema de paralelismo. O fabricante do sistema de paralelismo deve sempre ser consultado para determinar se o sistema de controle do motor é adequado para a aplicação, uma vez que uma queda de voltagem no banco de baterias poderia interromper alguns sistemas de controle de paralelismo e exigir o uso das baterias em estações separadas para alimentar o equipamento de paralelismo. As baterias devem estar tão próximas quanto possível do grupo gerador para minimizar a resistência no circuito de partida. A localização deve permitir fácil acesso de serviço às baterias e minimizar sua exposição à água, sujeira e óleo. O gabinete das bateria deve permitir ampla ventilação para que os gases explosivos gerados pela bateria possam ser dissipados. O projetista do sistema deve especificar o tipo do sistema de baterias (geralmente limitado ao tipo chumbo-ácido ou níquel-cádmio, como explicado a seguir), bem como sua capacidade.
A capacidade necessária do sistema da baterias depende do tamanho do motor (cilindrada), das temperaturas mínimas esperadas do líquido de arrefecimento do motor, do óleo lubrificante e das baterias, a viscosidade do óleo lubrificante e o número necessário e a duração dos ciclos de partida. O fornecedor do grupo gerador deve fazer as recomendações com base nestas informações.
As baterias de chumbo-ácido são o tipo mais comumente escolhido para grupos geradores. Elas são relativamente econômicas e oferecem bom serviço em temperaturas ambientes entre –18ºC e 38ºC. As baterias de chumbo-ácido podem ser recarregadas por carregadores convencionais, que podem ser montados em paredes próximas ao grupo gerador ou em um comutador de
transferência automática (se o grupo gerador NÃO for parte de um sistema de paralelismo). O carregador deve ser dimensionado para recarregar o banco de baterias em aproximadamente 8 horas e ao mesmo tempo atender todas as necessidades de energia de controle do sistema.
Uma bateria de chumbo-ácido pode ser do tipo selada “livre de manutenção” ou do tipo de célula inundada. As baterias livres manutenção suportam melhor as negligências de manutenção porém não são monitoradas e mantidas tão facilmente quanto as baterias de célula inundada. Todas as baterias de chumbo-ácido devem ser carregadas no local antes de sua utilização inicial. Mesmo as baterias livres de manutenção não retêm a carga indefinidamente.
As baterias de célula inundada requerem a adição de eletrólito no local de uso e atingem cerca de 50% da condição de carga total pouco tempo depois da adição do eletrólito.
Os sistemas de bateria NiCad (níquel-cádmio) são geralmente especificados para locais onde as temperaturas ambientes podem ser extremamente altas ou baixas, visto que seu desempenho é menos afetado por temperaturas extremas do que no caso das baterias de chumbo-ácido. Os sistemas de bateria NiCad são consideravelmente mais caros do que as baterias de chumbo-ácido, mas eles têm uma vida útil mais longa.
Uma das maiores desvantagens dos sistemas de baterias NiCad é que seu descarte pode ser difícil e caro, uma vez que os materiais que compõem essas baterias são tóxicos. Além disso, as baterias NiCad requerem carregadores
especiais para que atinjam o nível de carga plena. Esses carregadores devem ser fornecidos com filtros para reduzir o “ruído do carregador” o qual pode interromper os sistemas de controle do motor e do gerador.
Bookmark and Share

16 setembro 2009

Isolamento de Vibração do Grupo Gerador


O projeto de instalação de um Grupo Gerador deve prover uma fundação apropriada para suportar o grupo gerador e evitar que os nocivos ou incômodos níveis de energia resultantes da vibração do grupo gerador sejam transmitidos à estrutura do edifício. Além disso, a instalação deve assegurar que a infra-estrutura de suporte do grupo gerador não permita que suas vibrações sejam transmitidas à partes estacionárias do equipamento.
Todos os componentes que se conectam fisicamente ao grupo gerador devem ser flexíveis para absorver o movimento de vibração sem danos. Os componentes que requerem isolamento são o sistema de escape do motor, as linhas de combustível, a fiação de alimentação da energia de CA, a fiação da carga, a fiação de controle (a qual deve ter fios flexíveis em vez de fios sólidos), o grupo gerador (a partir dos coxins de montagem) e os dutos de ar de ventilação (para os grupos geradores com radiador montado no chassi).
A falta de atenção ao isolamento destes pontos de interconexão física e elétrica pode resultar em danos por vibração ao edifício ou ao grupo gerador e falhas do grupo gerador em serviço.
O motor, o alternador e outros equipamentos integrados ao grupo gerador são geralmente montados no conjunto da estrutura da base, ou skid. O skid é uma estrutura rígida que garante a integridade estrutural e oferece um grau de isolamento de vibrações. A fundação, o piso ou o teto devem ser capazes de suportar o peso do grupo gerador montado e seus acessórios (como um tanque de combustível sob a base), bem como resistir às cargas dinâmicas e não transmitir ruídos e vibrações indesejados. Note que em aplicações onde o isolamento das vibrações é crítico, o peso do conjunto montado pode incluir uma fundação sólida de montagem.
O tamanho, o peso e as configurações de montagem variam muito entre fabricantes e equipamentos. Consulte as instruções de instalação do fabricante do modelo específico instalado para informações detalhadas sobre pesos e dimensões de montagem.

Aguarde por novas dicas e informações sobre toda a montagem mecânica de Grupos Geradores de Energia.

Bookmark and Share

Estudo de Seletividade - Grupos Geradores

Estudo de Seletividade é a eliminação imediata de uma falha de curto-circuito em todos os níveis de corrente de falha pelo dispositivo de sobrecorrente (disjuntores) no lado de linha da falha e somente por esse dispositivo. “A eliminação incômoda” de uma falha por dispositivos de sobrecorrente após o dispositivo mais próximo à falha causa a interrupção desnecessária de ramificações sem falha no sistema de distribuição e pode causar a partida desnecessária do sistema de emergência (Grupo Gerador). As falhas de energia elétrica incluem falhas externas, tais como corte total ou parcial da energia da concessionária e falhas internas dentro no sistema de distribuição de um edifício, tais como uma falha de curto-circuito ou sobrecarga que faz com que um dispositivo de proteção contra corrente excessiva abra o circuito. Como os sistemas de emergência e standby destinam-se a manter a energia para certas cargas críticas, o sistema de distribuição elétrica deve ser projetado para maximizar a continuidade da energia na eventualidade de uma falha dentro do sistema. Portanto, o sistema de proteção contra sobrecorrente deverá ser coordenado seletivamente (Estudo de Seletividade).
A proteção contra sobrecorrente para o equipamento e os condutores que fazem parte do sistema de energia de emergência ou standby, inclusive o grupo gerador local, deverão atender as normas elétricas aplicáveis. Contudo, em aplicações onde o grupo gerador de emergência alimenta cargas críticas para a segurança à vida, como em hospitais ou grandes edifícios, deve ser dada maior prioridade à manutenção da continuidade da energia do que à proteção do sistema de emergência. Por exemplo, seria mais apropriado apenas uma indicação de alarme de sobrecarga ou de falha de terra do que abrir um disjuntor para proteger o equipamento se o resultado fosse a perda da energia de emergência para cargas críticas de segurança à vida.

Para fins de coordenação, a corrente de curto-circuito disponível nos primeiros ciclos de um grupo gerador é importante. Ela independe do sistema de excitação e depende somente das características magnéticas e elétricas do gerador. A corrente máxima no primeiro ciclo trifásico de curto-circuito simétrico (Isc) disponível de um gerador em seus terminais é:

Ou, considerando-se uma unidade:

ECA é a voltagem do circuito aberto e X”d é a reatância subtransiente direta por unidade do eixo do gerador. O valor X”d para um grupo gerador típico de mercado fornecerá 8 a12 vezes sua corrente nominal em uma falha trifásica, independentemente do tipo de sistema de excitação. (Consulte as especificações do grupo gerador e os dados do alternador para obter os valores de X”d). As reatâncias do gerador são indicadas por unidade para a classificação básica específica de um alternador. Todavia, os grupos geradores possuem várias classificações básicas. Conseqüentemente, para converter reatâncias em unidades a partir de um alternador básico para o grupo gerador básico, utilize a seguinte fórmula:


Exemplo de Cálculo: Calcule X”d (reatância subtransiente do alternador) para o grupo gerador a diesel classificado para 288 kVA em 277/480 VCA. A folha de dados deste grupo gerador indica que X”d = 0,13 para o alternador no ponto de classificação de plena carga de 499 kVA e 277/480 VCA (125º C de elevação de temperatura). Substituindo-se estes valores na equação anterior:
 
Recomendações sobre a Localização do Equipamento: Para um estudo de seletividade, recomenda-se que as chaves de transferência estejam localizados no lado de carga do dispositivo de sobrecorrente do circuito de ramificação, onde for possível no lado da linha de um painel de comando do circuito de ramificação. Com a chave de transferência no lado da carga do dispositivo de sobrecorrente do circuito de ramificação, as falhas no lado da carga da chave de transferência não resultarão na transferência das ramificações sem falha do sistema de emergência para o gerador juntamente com a ramificação com falha.
Esta recomendação é consistente com as recomendações de confiabilidade geral para a instalação de chaves de transferência o mais próximo possível do equipamento de carga, e para dividir as cargas do sistema de emergência nos menores circuitos possíveis utilizando-se várias chaves de transferência.
Uma segunda recomendação é usar um gerador de sustentação (excitação PMG) para liberar positivamente os disjuntores de ramificação de carcaça moldada. Um gerador de sustentação pode oferecer uma vantagem na liberação dos disjuntores de carcaça moldada de mesma classificação de corrente, porém características de tempo corrente diferentes.

Bookmark and Share

08 setembro 2009

Considerações sobre o Local de Instalação do Grupo Gerador

Uma das primeiras decisões no projeto deve ser determinar se o grupo gerador ficará localizado dentro ou fora do edifício, em um abrigo ou uma carenagem.
O custo total e a facilidade de instalação do sistema de energia elétrica dependem do arranjo e da localização física de todos os elementos do sistema - grupo gerador, chaves comutadoras, tanques de combustível, dutos e defletores de ventilação, acessórios, etc. Os seguintes aspectos devem ser considerados tanto para a localização interna quanto externa:
  • Montagem do grupo gerador.
  • Localização do quadro de distribuição e das chaves de transferência (QTAs).
  • Ramificações dos circuitos para aquecedores de líquido de arrefecimento, carregador de bateria, etc.
  • Segurança contra inundação, incêndio, formação de gelo e vandalismo.
  • Contenção de derramamento acidental ou vazamento de combustível ou de líquido de arrefecimento.
  • Possibilidade de danos simultâneos nos serviços da fonte normal e de emergência.
  • Acesso para manutenção e inspeções gerais.
  • Acesso e espaço de trabalho para grandes serviços como revisões ou remoção/substituição de peças.

Considerações sobre o Local Externo
  • Emissão e atenuação dos níveis de ruídos.
  • Tipos de carenagens - Grupos geradores de até 500 kW aproximadamente são fornecidos com carenagens ‘compactas’. Entretanto, manter uma temperatura ambiente mínima de 4ºC para atender os requisitos de certas normas pode ser difícil em uma carenagem externa ‘compacta’. Existem carenagens com cobertura para a maioria dos grupos geradores. Se forem incluídos recursos de atenuação de ruídos, o tamanho da carenagem aumentará consideravelmente.
  • O acesso para grandes reparos, substituição de componentes (tais como radiador ou alternador) ou recondicionamento devem ser considerados no projeto da carenagem e na instalação de grupos geradores próximos a outros equipamentos ou estruturas. Se for necessário um grande serviço devido ao número de horas de operação ou dano/falha de grandes componentes, as entradas de acesso se tornarão críticas. Essas entradas incluem tampas de acesso, paredes removíveis da carenagem, distância adequada de estruturas próximas e acesso aos equipamentos de suporte necessários.
  • Cercas de proteção e barreiras visuais.
  • Distâncias dos limites da propriedade.
  • O escape do motor deve ser direcionado para longe de ventilações e aberturas do edifício.
  • Aterramento - Eletrodos ou anéis de aterramento podem ser necessários para aterramento separado ou derivado do sistema e/ou do equipamento.
  • Proteção contra raios.

Considerações sobre o Local Interno
  • Sala exclusiva para o gerador – Para sistemas de energia elétrica de emergência, certas normas podem exigir que a sala do gerador seja utilizada somente para acomodá-lo. Considere também o efeito que um grande fluxo de ar da ventilação poderia ter sobre outros equipamentos na mesma sala, tais como equipamentos de aquecimento do edifício.
  • Classificação contra incêndio na construção da sala – As normas geralmente especificam uma capacidade mínima de resistência contra incêndio de 1 ou 2 horas. Consulte as autoridades locais para obter os requisitos aplicáveis.
  • Área de trabalho – A área de trabalho ao redor de equipamentos elétricos normalmente é especificada por normas. Na prática, deve haver pelo menos 1 metro de espaço livre em torno de cada grupo gerador. A substituição do alternador deve ser feita sem a necessidade de remoção de todo o conjunto ou qualquer acessório. Além disso, o projeto da instalação deverá prever o acesso para grandes trabalhos (como recondicionamento ou substituição de componentes, como um radiador, p. ex.).
  • Tipo do sistema de arrefecimento – Recomenda-se um radiador original de fábrica, mas o ventilador do radiador pode criar uma pressão negativa significativa na sala. As portas de acesso devem, portanto, abrir para dentro da sala ou serem protegidas por anteparos – de maneira que possam ser abertas quando o grupo gerador está funcionando.
  • A ventilação envolve grandes volumes de ar. Num projeto ideal de sala, o ar é sugado diretamente do exterior e expelido para fora pela parede oposta. Para configurações opcionais de arrefecimento de grupos geradores que envolvam trocadores de calor ou radiadores remotos, serão necessários ventiladores para a ventilação da sala.
  • Escape do motor – A saída de escape do motor deverá ser tão alta quanto a prática permitir no lado descendente dos ventos dominantes e voltada diretamente para fora da ventilação e aberturas do edifício.
  • Armazenamento e tubulação de combustível – As normas locais podem especificar métodos de armazenamento de combustível dentro de edifícios e restringir as quantidades armazenadas. Uma consulta prévia com o comando local do Corpo de Bombeiros é recomendável. Será necessário acesso para o reabastecimento dos tanques de armazenamento. 
  • Recomenda-se que sejam incluídos recursos no sistema de distribuição elétrica para a conexão de um banco de carga temporário do grupo gerador. 
  • A localização dentro de um edifício dever permitir o acesso para a entrega e instalação do produto e posteriormente para serviços e manutenção. A localização lógica para um grupo gerador num edifício com base nestas considerações é no andar térreo, próximo a um estacionamento ou pista de acesso, ou na rampa de um estacionamento aberto. Sabendo que estas são áreas nobres de um edifício, se for necessário um outro local, lembre-se que podem ser necessários equipamentos pesados para a instalação e grandes serviços na unidade. Além disso, as entregas de combustível, líquido de arrefecimento, óleo, etc., são necessárias em vários intervalos. Um sistema de combustível provavelmente será projetado com tanques de suprimento, bombas, linhas, tanques diários, etc., mas as trocas de óleo lubrificante e de líquido de arrefecimento poderão ser dificultadas se os materiais tiverem que ser transportados manualmente em barris ou baldes.
  • As instalações sobre lajes, embora comuns, requerem um planejamento complementar e considerações sobre o projeto estrutural. As vibrações e o armazenamento/entrega do combustível podem ser problemáticos em instalações deste tipo. 
  • Locais internos geralmente requerem uma sala exclusiva com estruturas contra fogo. Fornecer fluxo de ar para o interior da sala pode ser um problema. Geralmente, não são permitidos abafadores de incêndio em dutos para o interior das salas. O ideal é que a sala tenha duas paredes externas opostas entre si de forma que o fluxo do ar de entrada flua sobre o grupo gerador e seja levado para fora através da parede oposta, no lado do radiador da unidade.
    Bookmark and Share


03 setembro 2009

Classificações de Trabalho do Grupo Gerador

Determinar as cargas a serem suportadas por um grupo gerador é uma função do tipo da aplicação e do trabalho requerido. Geralmente, existem três classificações de trabalho para as aplicações de grupos geradores: Standby, Prime ou Contínua. Clique aqui para entender melhor estas classificações. Os tipos disponíveis de grupo gerador variam de acordo com estas classificações. Um grupo gerador usado em aplicações Standby é uma reserva da fonte de energia principal (concessionária de energia) e espera-se que o mesmo não seja utilizado com freqüência, de modo que a classificação Standby é a mais alta disponível para o grupo gerador. Espera-se que os grupos geradores classificados como Prime funcionem durante um número ilimitado de horas e o grupo gerador é considerado a fonte principal de energia para cargas variáveis, de modo que a classificação Prime geralmenterepresenta 90% da classificação Standby. Em aplicações de trabalho Contínuo, espera-se que o grupo gerador produza a saída nominal durante um número ilimitado de horas sob carga constante (aplicações onde o grupo gerador pode ser operado em paralelo com a fonte principal de energia e sob carga básica). Assim, a classificação Contínua normalmente é 70% da classificação Standby. A capacidade de suporte de carga do grupo gerador é uma função da vida esperada ou do intervalo entre revisões gerais.
Genericamente, as aplicações de grupos geradores podem ser divididas em duas categorias básicas: aquelas que são obrigatórias por força de normas (exigência legal), e aquelas que são utilizadas por razões econômicas (geralmente associadas à disponibilidade ou confiabilidade de energia).
Estas categorias definirão um conjunto completamente diferente de opções quando forem tomadas decisões sobre quais cargas serão alimentadas com o grupo gerador.

Em geral, as obrigatórias por Força de Normas são aquelas aplicações  consideradas pelas autoridades como de emergência ou standby legalmente exigidas, onde a segurança e o suporte à vida são essenciais. Estes tipos de aplicações podem ser definidos em normas de edifícios ou normas específicas de segurança da vida e normalmente envolvem instalações como centros de saúde (hospitais, enfermarias, clinicas), construção de edifícios altos e locais de grande tráfego de pessoas (teatros, locais de convenções, praças esportivas, hotéis). Normalmente, o grupo gerador fornecerá energia de reserva para cargas como iluminação de saídas, ventilação, detecção de incêndio e sistemas de alarme, sistemas de comunicação de segurança pública e até processos industriais onde a falta de energia cria riscos de vida ou de acidentes pessoais. Outros sistemas legalmente exigidos são obrigatórios quando for determinado que a falta de energia da empresa fornecedora de eletricidade constitui um risco ou um obstáculo para as operações de resgate ou de combate a incêndios. Para determinar as cargas mínimas que podem ser alimentadas pelo gerador, consulte as autoridades locais para obter normas e padrões associados. Opcionalmente, podem ser aplicadas cargas adicionais ao gerador desde que aprovadas pelas autoridades locais.

O sistema Standby Opcional tem sido usado com mais freqüência uma vez que a disponibilidade de energia tem se tornado mais crítica. Estes sistemas de energia são empregados em instalações como edifícios industriais e comerciais e alimentam cargas como sistemas de aquecimento, refrigeração, comunicações e centros de processamento de dados, e processos industriais críticos. O emprego de geradores justifica-se onde a perda da energia da fonte normal possa causar desconforto ou onde a interrupção de processos críticos seja uma ameaça a produtos ou equipamentos.

O uso de grupos geradores de energia prime ou contínua cresce especialmente em países em desenvolvimento e em muitas aplicações de geração de energia distribuída. Existem muitas oportunidades para as empresas fornecedoras em termos de geração e venda de energia. Novas regulamentações e normas ambientais mais rígidas forçam as empresas fornecedoras de energia a procurar outras formas de produção e distribuição para a construção de novas plantas de geração, como estruturas de corte de picos e taxas de interrupção para atender a demanda crescente. Os clientes das concessionárias de energia utilizam a geração local para reduzir a demanda de pico da fonte normal e continuam a buscar oportunidades de co-geração onde haja demanda para energia elétrica e energia térmica.

De qualquer modo, deve-se ter em mente que os grupos geradores são pequenas fontes de energia comparados com a fonte normal da rede pública, e as características operacionais das cargas podem ter um efeito profundo na qualidade da energia se o gerador não for dimensionado corretamente. Considerando que um gerador é uma fonte de energia limitada, sempre que forem conectadas ou desconectadas cargas de um gerador, deve-se esperar por alterações na voltagem e na freqüência. Essas alterações devem ser mantidas dentro de limites aceitáveis para todas as cargas conectadas. Além disso, surgirão distorções de voltagem na saída do gerador quando forem conectadas cargas não lineares que produzem correntes harmônicas.
Essas distorções podem ser consideravelmente maiores quando as cargas são alimentadas pelo gerador do que quando são alimentadas pela rede da concessionária, e provocarão um aquecimento adicional tanto no gerador quanto no equipamento de carga se não forem mantidas sob controle. Conseqüentemente, são necessários geradores maiores do que o exigido para alimentar cargas e limitar as alterações de voltagem e freqüência durante as cargas transientes e as distorções harmônicas quando forem suportadas cargas não lineares como computadores, UPSs e VFDs.
Os atuais programas de software de dimensionamento de geradores permitem maior precisão na escolha do grupo gerador e fornecem um nível mais alto de confiança para a aquisição de um sistema grande o suficiente para as necessidades do cliente – e não maior. Embora a maioria dos exercícios de dimensionamento de geradores forneça melhores resultados com programas ou com a ajuda de um representante do fabricante – ainda é útil saber o que envolve a escolha correta do grupo gerador para sua aplicação.

Além da carga conectada, vários outros fatores afetam o dimensionamento do grupo gerador: requisitos de partida de cargas como motores e suas cargas mecânicas, desbalanceamento de cargas monofásicas, cargas nãolineares como equipamentos UPS, restrições de queda de voltagem, cargas cíclicas, etc.
Bookmark and Share